skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Min-Woo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal halide perovskite crystals grown on close-packed titanium dioxide colloidal monolayers exhibit hopper-like 3D morphologies, with growth initially directed vertically from the substrate before transitioning to the parallel direction. 
    more » « less
  2. Solution-processable organic materials for emerging electronics can generally be divided into two classes of semiconductors, organic small molecules and polymers. The theoretical thermodynamic limits of device performance are largely determined by the molecular structure of these compounds, and advances in synthetic routes have led to significant progress in charge mobilities and light conversion and light emission efficiencies over the past several decades. Still, the uncontrolled formation of out-of-equilibrium film microstructures and unfavorable polymorphs during rapid solution processing remains a critical bottleneck facing the commercialization of these materials. This tutorial review provides an overview of the use of nanoconfining scaffolds to impose order onto solution-processed semiconducting films to overcome this limitation. For organic semiconducting small molecules and polymers, which typically exhibit strong crystal growth and charge transport anisotropy along different crystallographic directions, nanoconfining crystallization within nanopores and nanogrooves can preferentially orient the fast charge transport direction of crystals with the direction of current flow in devices. Nanoconfinement can also stabilize high-performance metastable polymorphs by shifting their relative Gibbs free energies via increasing the surface area-to-volume ratio. Promisingly, such nanoconfinement-induced improvements in film and crystal structures have been demonstrated to enhance the performance and stability of emerging optoelectronics that will enable large-scale manufacturing of flexible, lightweight displays and solar cells. 
    more » « less
  3. Abstract Optoelectronic properties of anisotropic crystals vary with direction requiring that the orientation of molecular organic semiconductor crystals is controlled in optoelectronic device active layers to achieve optimal performance. Here, a generalizable strategy to introduce periodic variations in the out‐of‐plane orientations of 5,11‐bis(triisopropylsilylethynyl)anthradithiophene (TIPS ADT) crystals is presented. TIPS ADT crystallized from the melt in the presence of 16 wt.% polyethylene (PE) forms banded spherulites of crystalline fibrils that twist in concert about the radial growth direction. These spherulites exhibit band‐dependent light absorption, photoluminescence, and Raman scattering depending on the local orientation of crystals. Mueller matrix imaging reveals strong circular extinction (CE), with TIPS ADT banded spherulites exhibiting domains of positive or negative CE signal depending on the crystal twisting sense. Furthermore, orientation‐dependent enhancement in charge injection and extraction in films of twisted TIPS ADT crystals compared to films of straight crystals is visualized in local conductive atomic force microscopy maps. This enhancement leads to 3.3‐ and 6.2‐times larger photocurrents and external quantum efficiencies, respectively, in photodetectors comprising twisted crystals than those comprising straight crystals. 
    more » « less